Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography.

نویسندگان

  • Chuan Fei Guo
  • Tianyi Sun
  • Qihan Liu
  • Zhigang Suo
  • Zhifeng Ren
چکیده

Foldable photoelectronics and muscle-like transducers require highly stretchable and transparent electrical conductors. Some conducting oxides are transparent, but not stretchable. Carbon nanotube films, graphene sheets and metal-nanowire meshes can be both stretchable and transparent, but their electrical resistances increase steeply with strain <100%. Here we present highly stretchable and transparent Au nanomesh electrodes on elastomers made by grain boundary lithography. The change in sheet resistance of Au nanomeshes is modest with a one-time strain of ~160% (from ~21 Ω per square to ~67 Ω per square), or after 1,000 cycles at a strain of 50%. The good stretchability lies in two aspects: the stretched nanomesh undergoes instability and deflects out-of-plane, while the substrate stabilizes the rupture of Au wires, forming distributed slits. Larger ratio of mesh-size to wire-width also leads to better stretchability. The highly stretchable and transparent Au nanomesh electrodes are promising for applications in foldable photoelectronics and muscle-like transducers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes.

Next-generation flexible electronics require highly stretchable and transparent electrodes. Few electronic conductors are both transparent and stretchable, and even fewer can be cyclically stretched to a large strain without causing fatigue. Fatigue, which is often an issue of strained materials causing failure at low strain levels of cyclic loading, is detrimental to materials under repeated l...

متن کامل

Directed self-assembly of rhombic carbon nanotube nanomesh films for transparent and stretchable electrodes

School of Energy and Chemical Engineering Technology (UNIST), Ulsan Metropolitan C [email protected] Photo-Electronic Hybrids Research Center, K Seoul 136-791, Republic of Korea KU-KIST Graduate School of Converging S Seoul 136-701, Republic of Korea So Innovative Materials Research Center, K Jeonbuk, 565-905, Republic of Korea † Electronic supplementary informa 10.1039/c4tc02733g ‡ These au...

متن کامل

Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells

In this contribution, the optical losses and gains attributed to periodic nanohole array electrodes in polymer solar cells are systematically studied. For this, thin gold nanomeshes with hexagonally ordered holes and periodicities (P) ranging from 202 nm to 2560 nm are prepared by colloidal lithography. In combination with two different active layer materials (P3HT:PC61BM and PTB7:PC71BM), the ...

متن کامل

Cu Mesh for Flexible Transparent Conductive Electrodes

Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target--a simple but inn...

متن کامل

Stretchable and transparent electrodes based on in-plane structures.

Stretchable electronics has attracted great interest with compelling potential applications that require reliable operation under mechanical deformation. Achieving stretchability in devices, however, requires a deeper understanding of nanoscale materials and mechanics beyond the success of flexible electronics. In this regard, tremendous research efforts have been dedicated toward developing st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014